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Abstract
A group-theoretical comparison of domain walls in orientation twins and
antiphase structures is presented for the improper ferroelastic transition in
lead orthovanadate, Pb3(VO4)2. Six possible domains arise in the daughter
state: three orientation states and three translation-related antiphase states. The
transition is driven by a three-component primary order parameter belonging
to the F+

2 irrep, with secondary order parameters consisting of elements of
the spontaneous strain tensor. Order-parameter profiles across domain walls
which arise in structures composed of pairs of the allowed daughter states can
be calculated by constructing the Landau–Ginzburg free energy and applying
the Euler–Lagrange equations. We present some solutions of the resulting
differential equations, and note some interesting features in the symmetries of
the profiles described by these solutions. In particular, the antiphase wall is
described by the same diperiodic group as the domains on either side of it,
whereas the orientation-twin wall is described by a different diperiodic group
to either of the two domains bordering it.

1. Introduction

Phase transitions in solids frequently result in multi-domain structures, which necessarily
contain boundaries between domains, i.e., domain walls. These domain walls represent regions
where the values of the order parameters are changing. Such changes in order parameters
can affect the macroscopic properties of the material, and therefore are of theoretical and
experimental interest. The mathematical description of how an order parameter changes
across a wall is contained in its profile. In this work, we will focus on a symmetry description
of the domains and order-parameter profiles that arise in the ferroelastic transition in lead
orthovanadate, Pb3(VO4)2.
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Ashland, OR 97520, USA.
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At high temperatures, lead orthovanadate has the structure [1] shown schematically in
figure 1(a). The structural units shown are repeated along a hexagonal lattice and are described
by the hexagonal space groupR3̄m (here, we follow the convention of the International Tables
[2], and take the c-axis to be parallel to the 3̄ axis). In this phase, the lead and vanadium atoms
align along the c-axis. The oxygen atoms form tetrahedra around the vanadium atoms, with
successive tetrahedra along the c-axis rotated by 60◦ with respect to each other. Upon cooling
through Tc ≈ 120 ◦C, the material undergoes a structural phase transition to a monoclinic
phase depicted in figures 1(b) and 1(c), and described by the space group P21/c. This
monoclinic phase arises as a result of atomic displacements as depicted in figure 1(c), with two
of the lead and both of the vanadium atoms displacing perpendicular to the c-axis (the central
lead atom does not displace), and accompanied by the appearance of a spontaneous strain.
The oxygen tetrahedra also rotate around an axis perpendicular to the displacements of the
lead and vanadium atoms. These distortions define the transition as being driven by F-point
distortions (order parameter), specifically belonging to the F+

2 irreducible representation of the
parent R3̄m space group. This irreducible representation carries a three-component primary
order parameter, (η1, η2, η3), that describes the displacements of the atoms from their parent
hexagonal positions. For example, atoms at Wyckoff c positions (such as the V atoms and two
of the Pb atoms) will distort off the c-axis along the hexagonal a-direction (corresponding to
η1), b-direction (corresponding to η2) or −a−b-direction (corresponding to η3), thus breaking
the threefold symmetry of the parent structure.

Figure 1. Structure of a formula unit of Pb3(VO4)2: (a) parent phase, (b) monoclinic phase and
(c) symmetry-breaking distortions at Wyckoff c positions.

F+
2 distortions simultaneously allow 	+

1 and 	+
3 distortions to appear (since no further

symmetry change is introduced by these distortions). These distortions correspond to the
secondary order parameters, which in this case are components of the spontaneous strain
tensor, as indicated below:

	+
1 : ν = e11 + e22

	+
3 : (u1, u2) = (e11 − e22, 2e12).

(1)
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2. Relationships between domains

The atomic displacements shown in figures 1(b) and 1(c) result in the loss of the threefold
symmetry axis of the parent phase. This means that there will be three orientation states in the
monoclinic daughter phase, which will be labelled S1, S2 and S3. Furthermore, the transition
results in a cell doubling [3], meaning the loss of half of the parent translation subgroup, which
gives rise to three more states, labelled S4, S5 and S6, in the daughter phase. These three states
are related to the three orientation states by simple translations, S4 being related to S1, S5 being
related to S2 and S6 being related to S3. Thus, there are six possible domains in the daughter
phase [4–6]. The values of the primary order parameter for each of the six possible domains
are given in table 1.

Table 1. Primary-order-parameter values.

Domain OP Domain OP

S1 (a, 0, 0) S4 (−a, 0, 0)
S2 (0, a, 0) S5 (0, −a, 0)
S3 (0, 0, a) S6 (0, 0, −a)

Since there is more than one state in the daughter phase, there will be some elements in
the parent group, G, that are not in the daughter group, F. For example, in lead orthovanadate,
the threefold axis present in the parent phase is lost in the ferroelastic transition, as are half
of the pure translations (due to the cell doubling). These lost symmetry elements transform
the possible domains into each other. For example, the lost threefold axis, upon successive
applications, transforms S1 into S2 and then S3. The set of lost elements, {g21}, that transform
the domain S1 into the domain S2, is the right coset of the symmetry group, F1, of the
domain S1:

{g21} = g21F1 (2)

where the g21 on the right-hand side is any one element that transforms domain S1 into domain
S2. Similar cosets can be calculated for the remaining domains.

The value of calculating the cosets, and thus listing the elements that transform domains
into each other, is in the constructing of twin groups, which describe the symmetry of a structure
composed of two juxtaposed semi-infinite domains with their separating planar domain wall
(figure 2). For the purposes of this discussion, such a structure has two types of symmetry
element: operations that leave each domain and the direction normal to the wall unchanged;
and operations that interchange the two domains and reverse the direction normal to the domain
wall. (The symmetry elements can be further classified into four types [7], but such detail is
not necessary here.) Additionally, the operations must leave the position of the domain wall
and its orientation (aside from the direction reversal just mentioned) unchanged, so the twin
group has, in general, fewer elements than the symmetry groups describing either domain. The
symmetry elements which leave each domain unchanged are found in the intersection of the
symmetry groups of the two domains, while the symmetry elements that interchange the two
domains are found in the intersection of the two cosets, each of which transforms one domain
into the other. The usefulness of the elements of the twin group, particularly the elements
which interchange the domains, will be emphasized below.

Since there are six possible single-domain states, there are 6 × 6 = 36 possible twin
configurations (each of which has a number of possible wall orientations). For the specific
transition we are considering, this number can be reduced to three distinct classes of twins:
the degenerate ‘twins’ class where the same domain state is on each side of the wall, the
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Figure 2. A sample domain twin.

orientation-twin class and the class of antiphase structures. The degenerate case will not be
considered further, and one orientation twin and one antiphase structure can be considered as
representative of each class of twins.

3. Equations describing the order-parameter profiles

Calculation of order-parameter profiles makes use of the Landau–Ginzburg free energy. This
free energy is constructed as an expansion in invariant polynomials of the primary and
secondary order parameters. Such invariant polynomials are left unchanged by the actions
of the elements of the parent space group, and so reflect the symmetry of the parent structure.
These invariant polynomials can be calculated by computer [8, 9], and included to arbitrary
order. However, in practice, the expansion is typically kept only to fourth order in the primary
order parameter, and to second order in the secondary order parameters (the expansion may
need to be carried to higher order for stability concerns or to model first-order transitions).
The specific form of the invariants, especially those involving derivatives, can depend on the
coordinate system chosen; in particular, the strain components eij depend on the coordinate
system, since they involve differentiation of displacement-vector components with respect to
the defined coordinate directions. The invariant polynomials of the primary order parameter for
the ferroelastic transition in lead orthovanadate are listed in table 2, for the coordinate system
defined as in figure 3 with the Cartesian y- and z-axes chosen parallel to the hexagonal b- and
c-axes. Gradient terms with second derivatives are included. This generality is unnecessary in
systems where the order parameter varies slowly enough in space that only first-derivative terms
are needed, but is necessary for cases of very thin walls where contributions from higher-order
derivatives cannot be ignored. Because we are performing a second-order variation below, we
have included such terms in table 2.

In general, the orientation of the domain wall will not contain a coordinate axis. However,
since the domains on either side of the wall are semi-infinite, all quantities associated with the
structure are variables in the distance from the wall only. That is, changes in position parallel
to the wall will not result in changes in local properties of the crystal. So, it is useful to rotate to
a new coordinate system, (x ′, y ′, z′) where the x ′-direction is normal to the domain wall. For
example, if the domain wall is parallel to the σv3 mirror plane (a case that will occur below),
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Table 2. Invariant polynomials for the F+
2 irreducible representation of R3̄m.

Primary order parameter
ϕ1 = η2

1 + η2
2 + η2

3

ϕ2 = (η2
1 + η2

2 + η2
3)

2

ϕ3 = η4
1 + η4

2 + η4
3

Secondary order parameters
ψ1 = ν

ψ2 = ν2

ψ3 = u2
1 + u2

2

Coupling terms
ζ1 = ν(η2

1 + η2
2 + η2

3)

ζ2 = 1
2u1(η

2
1 − 2η2

2 + η2
3) +

√
3

2 u2(η
2
1 − η2

3)

Gradient terms

δ1 = 5
6η1

∂2η1
∂x2 − 1√

3
η1

∂2η1
∂x∂y

+ 1
2η1

∂2η1
∂y2 + 1

3η2
∂2η2
∂x2 + η2

∂2η2
∂y2 + 5

6η3
∂2η3
∂x2 + 1√

3
η3

∂2η3
∂x∂y

+ 1
2η3

∂2η3
∂y2

δ2 = − 1
2
√

3
η1

∂2η1
∂x2 + η1

∂2η1
∂x∂y

+ 1
2
√

3
η1

∂2η1
∂y2 + 1√

3
η2

∂2η2
∂x2 − 1√

3
η2

∂2η2
∂y2 − 1

2
√

3
η3

∂2η3
∂x2 − η3

∂2η3
∂x∂y

+ 1
2
√

3
η3

∂2η3
∂y2

δ3 = 1
2η1

∂2η1
∂x∂z

+
√

3
2 η1

∂2η1
∂y∂z

− η2
∂2η2
∂x∂z

+ 1
2η3

∂2η3
∂x∂z

−
√

3
2 η3

∂2η3
∂y∂z

δ4 = η1
∂2η1
∂z2 + η2

∂2η2
∂z2 + η3

∂2η3
∂z2

δ5 = 5
6

(
∂η1
∂x

)2 − 1√
3

(
∂η1
∂x

) (
∂η1
∂y

)
+ 1

2

(
∂η1
∂y

)2
+ 1

3

(
∂η2
∂x

)2
+
(
∂η2
∂y2

)
+ 5

6

(
∂η3
∂x

)2
+ 1√

3

(
∂η3
∂x

) (
∂η3
∂y

)
+ 1

2

(
∂η3
∂y

)2

δ6 = − 1
2
√

3

(
∂η1
∂x

)2 −
(
∂η1
∂x

) (
∂η1
∂y

)
+ 1

2
√

3

(
∂η1
∂y

)2
+ 1√

3

(
∂η2
∂x

)2 − 1√
3

(
∂η2
∂y

)2 − 1
2
√

3

(
∂η3
∂x

)2 −
(
∂η3
∂x

) (
∂η3
∂y

)
+ 1

2
√

3

(
∂η3
∂y

)2

δ7 = 1
2

(
∂η1
∂x

) (
∂η1
∂z

)
+

√
3

2

(
∂η1
∂x

) (
∂η1
∂z

)
−
(
∂η2
∂x

) (
∂η2
∂z

)
+ 1

2

(
∂η3
∂x

) (
∂η3
∂z

)
−

√
3

2

(
∂η3
∂y

) (
∂η3
∂z

)
δ8 =

(
∂η1
∂z

)2
+
(
∂η2
∂z

)2
+
(
∂η3
∂z

)2

Figure 3. Cartesian x- and y-axes in relationship to the parent
hexagonal axes.

the transformation is an anticlockwise rotation of 30◦ around the z-axis:(
x ′

y ′

z′

)
=




√
3

2
1
2 0

− 1
2

√
3

2 0

0 0 1



(
x

y

z

)
. (3)

In making such a coordinate transformation, care must be taken that all quantities which depend
on the coordinate system are transformed, including vector components and derivatives.

After this coordinate transformation has been applied, the second-order variational Euler–
Lagrange equations are used:

∂

∂x ′
j

∂

∂x ′
k

[
∂F
∂ηi,jk

]
− ∂

∂x ′
j

[
∂F
∂ηi,j

]
+
∂F
∂ηi

= 0 (4)

σij,j = 0. (5)
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Here, a comma denotes partial differentiation; i.e., ηi,j = ∂ηi/∂x
′
j , and σij denotes the stress

tensor, which is related to the strain tensor by

σij = ∂F
∂eij

. (6)

Equation (5), together with the compatibility relations among the second derivatives of the
strain tensor components,

εpks
∂

∂x ′
k

(
∂esj

∂x ′
i

− ∂esi

∂x ′
j

)
= 0 (7)

(where εpks denotes the totally antisymmetric third-rank Levi-Civita tensor), puts constraints
on the strain components, allowing the secondary order parameters to be written (after some
straightforward but tedious algebra) as functions of the primary order parameters. This means
the free energy can be rewritten as a function of only the primary order parameter. Then, the
variation shown in equation (4) yields a set of three coupled ordinary differential equations
which describe the primary-order-parameter profiles. We obtained sets of coupled equations
for several domain wall orientations and for several antiphase and orientation-twin walls. For
our considerations with Pb3(VO4)2, the most general form of these equations is

d2η1

dx ′2 = α1η1 + β1η
3
1 + γ1η1η

2
2 + ε1η1η

2
3

d2η2

dx ′2 = α2η2 + β2η
3
2 + γ2η

2
1η2 + ε2η2η

2
3 (8)

d2η3

dx ′2 = α3η3 + β3η
3
3 + γ3η

2
1η3 + ε3η

2
2η3

where the coefficients depend on the orientation of the domain wall, and the expansion
coefficients in the Landau–Ginzburg free energy. The boundary conditions for these equations
are the values for the primary order parameter as listed in table 1.

For numerical simplicity, the primary order parameter will be rescaled to ±1:

(η1, η2, η3) → a(η1, η2, η3). (9)

For example, in S1, the order parameter will be (1, 0, 0). This rescaling does not affect the form
of the equations (8), but simply rescales the coefficients, so that each βi , γi , εi is multiplied by
a2. For simplicity of notation, the a2 will be dropped.

4. The antiphase case

As a representative example of an antiphase structure, consider the structure composed of
domains S1 and S4, which are related by a simple translation. We will take x ′ to be positive on
the S4 side of the wall (the origin, x ′ = 0, is taken to be at the centre of the wall). Referring to
table 1 and equation (9), the order parameter changes across the wall and matches the boundary
condition

lim
x→±∞(η1, η2, η3) = (±1, 0, 0). (10)

Since the boundary conditions require both η2 and η3 to be zero far from the domain wall, it is
natural, at first, to make the simplifying assumption that these two components are identically
zero:

η2 ≡ 0 η3 ≡ 0. (11)
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This reduces the set of three coupled equations to a single equation,

d2η1

dx ′2 = αη1 + βη3
1. (12)

Far from the wall, the order parameter reaches the constant value it has in the corresponding
domain. Additionally, this means that all of its derivatives approach zero. Examining
equation (12), this leads to the conclusion that

α + β = 0. (13)

Thus, the boundary condition puts the strong restriction on the coefficients that if α �= −β
no real solution to equation (12) that matches the boundary conditions (10) exists. Under this
condition, rescaling the x ′-axis,

x ′′ =
√
βx ′ (14)

further simplifies the equation to

d2η1

dx ′′2 = −η1 + η3
1. (15)

This equation has the analytical solution

η1 = tanh(x ′′/
√

2). (16)

Rewriting this in terms of x ′,

η1 = tanh(x ′√β/2) (17)

expresses the general solutions that occur. Furthermore, it is easily seen from equation (17)
that in order for the solution to be real, β must be positive; that is,

β > 0. (18)

The solutions for several values of β are shown in figure 4. Note that the solution converges
to its final value faster for larger values of β.

Figure 4. Solutions for three values of β in the antiphase case, with η2 = 0, η3 = 0.

The more general case of the antiphase twin allows all three components of the order
parameter to be nonzero. A simplified case will be examined: orientations of the wall for which
there is an element in the twin group that interchanges η2 and η3, and reverses the direction
normal to the wall. In the present case, such elements are either twofold axes, parallel to C ′′

21,
or mirror planes, parallel to σv1 (following the notation of Bradley and Cracknell [10]). For
one of these elements to be in the twin group, the wall must be oriented so that it is either
parallel to σv1, or parallel to the C ′′

21-axis. For any other wall orientation, the action of C ′′
21 or
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σv1 will rotate the wall into some other orientation, and so such elements will not be in the
twin group.

If eitherC ′′
21 orσv1 is present in the twin group as described above, the matrix representation

of these elements in the F+
2 irrep can be used to gain some insight. These two elements have

the same matrix representation,

	(C ′′
21) = 	(σv1) =

(−1 0 0
0 0 −1
0 −1 0

)
. (19)

The action of this element has two effects: a rotation in the space spanned by (η1, η2, η3),
which interchanges η2 and η3 with a sign change in accordance with equation (19), and a
rotation in the (x ′, y ′, z′) Cartesian space. The rotation in Cartesian space is not represented
by equation (19), but the rotation, C ′′

21 or σv1, does switch x ′ to −x ′. Overall,

η1(x
′) ↔ −η1(−x ′)

η2(x
′) ↔ −η3(−x ′).

(20)

This immediately means that η1 is odd. Further, if η2 is odd (even) then η3 must also be odd
(even), as in figure 5.

(a)

(b)

Figure 5. Relationship between η2 and η3, with (a) η2 and η3 both even and (b) η2 and η3 both
odd.

The interchangeability of η2 and η3 requires that their coefficients in the differential
equations (8) be equal. This allows a first integral to be computed, relating the values of
the order-parameter components to their first derivatives. Since η1 must be odd, its value at
the origin is zero. If η2 and η3 are also odd, their values must also be zero at the origin. In
this case, the first integral is expressed in terms of values of the derivatives of η1 and η2 at the
origin,

η′
1(0)

2 + 2
γ1

γ2
η′

2(0)
2 = 1

2
(21)

where the prime indicates differentiation with respect to x ′. On the other hand, if η2 and η3

are even, their first derivatives at the origin are both zero, so the first integral is expressed in
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terms of the derivative of η1 and the value of η2 at the origin,

η′
1(0)

2 = 2

(
α2

β1

)(
γ1

γ2

)
η2(0)

2 +
1

2

(
β2 + ε2

β1

)(
γ1

γ2

)
η2(0)

4 +
1

2
. (22)

In either case, there are two unknowns at the origin: the derivative of η1, and either the value
of, or the derivative of, η2 and η3 (the interchangeability of η2 and η3 requires their values and
derivatives at the origin to be equal, to within a sign change).

At this point, simple shooting methods can be employed to numerically solve the system
of differential equations. When this is done, however, the only solutions found which match
the boundary conditions are those in which η2 and η3 both remain identically zero. From a
symmetry standpoint, this means that the form of the order parameter does not change across
the wall; i.e., it is always of the form (a, 0, 0). This means that the wall and the domains on
either side of it are all described by the same diperiodic space group.

5. The orientation-twin case

The twin formed by domains S1 and S2 will be studied as a representative example for the
orientation-twin case, with S1 on the x ′ < 0 side of the wall. For this case, the order parameter
changes across the wall as

lim
x ′→∓∞

(η1, η2, η3) =
{
(1, 0, 0) x ′ → −∞
(0, 1, 0) x ′ → +∞.

(23)

Now, two of the components have a nonzero boundary condition.
Since the phase transition studied here is ferroelastic, the orientation of allowed domain

walls is specified by Sapriel’s result [11], which is that allowed domain walls are either parallel
to lost mirror planes (W walls) or contain lost twofold axes (W′ walls) which transform the two
domains into each other. For the orientation twin considered here, formed by domains S1 and
S2, the lost twofold axis is the C ′′

23-axis, and the lost mirror plane is the σv3-plane. For walls
parallel or perpendicular to this axis, the twin group contains an element that interchanges
η1 and η2 while reversing the direction normal to the wall. This is either the C ′′

23-axis or the
σv3-plane. The F+

2 matrix representation of this element is

	(C ′′
22) = 	(σv2) =

( 0 1 0
1 0 0
0 0 −1

)
. (24)

For either W or W′ walls, then, the action of this twin-group element on the order parameter
is (recall that this element also switches x ′ to −x ′)

η1(x
′) = η2(−x ′)

η3(x
′) = −η3(−x ′).

(25)

This means that the coefficients of η1 and η2 in the differential equations must be equal. Since
the boundary conditions that must be met are not even or odd, it must be concluded that η1 and
η2 are both neither even nor odd. However, their interchangeability ensures that their values
are equal at the origin, and that their first derivatives at the origin differ only in sign. Further,
it is seen that η3 is odd. These observations allow the system of differential equations to be
simplified in a manner analogous to what was done with the antiphase case.

Since the derivatives must all vanish far from the wall, the condition must be met that

α1 + β1 = 0. (26)
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This allows the differential equations to be written:

d2η1

dx ′2 = −β1η1 + β1η
3
1 + γ1η1η

2
2 + ε1η1η

2
3

d2η2

dx ′2 = −β1η2 + β1η
3
2 + γ1η

2
1η2 + ε1η2η

2
3 (27)

d2η3

dx ′2 = α3η3 + β3η
3
3 + γ3(η

2
1 + η2

2)η3.

In the numerical analysis of this system of equations, a similar result is obtained, in that,
in order to match the boundary conditions on all three components, η3 must remain identically
zero, while only η1 and η2 vary. So, in what follows it will be assumed that η3 ≡ 0. The
system of differential equations then reduces to

η′′
1 = −η1 + η3

1 + γ η1η
2
2

η′′
2 = −η2 + η3

2 + γ η2
1η2

(28)

where the x ′-axis has been rescaled by
√
β1, and the prime indicates differentiation with

respect to this rescaled axis. These equations have an associated first integral whose value at
the origin is

η′
1(0)

2 = −η1(0)
2 + 1

2 (γ + 1)η1(0)
4 + 1

2 . (29)

Again, using this result, simple shooting methods allow solutions to be calculated.
Representative solutions to these equations are shown in figures 6 and 7. Figure 6 shows
both η1 and η2 for a typical solution, while figure 7 shows how one component depends on the

Figure 6. Graph of the solution for γ = 3.0.

Figure 7. Solutions for different values of γ .
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value of the parameter γ . Here it is seen that the solution converges more rapidly for larger
values of γ .

The symmetry implication here is markedly different to that for the antiphase case. In the
orientation-twin case, the wall has a primary-order-parameter form of (a, b, 0), which means
that the diperiodic group describing the wall is different from the two (different) diperiodic
groups describing the two domains comprising the twin.

6. Summary

A numerical and analytical study of the symmetries of antiphase and orientation-twin structures
in lead orthovanadate has been presented. The forms of the primary order parameter in the
six allowed domain states in the low-temperature phase are given, and the Landau–Ginzburg
free energy for the transition has been constructed. From this information, profiles for the
order parameters as they change across the domain walls in two-domain structures have been
calculated. Two types of two-domain structure have been considered: orientation twins and
antiphase structures. The symmetries of the two structures are shown to be markedly different.
In particular, the domain wall has the same form for the order parameter as the translationally
related domains on either side of the wall, while the orientation-twin wall has an order parameter
that is distinct from those of the domains on either side of it. We also find, for both the antiphase
and orientation twins, if an order-parameter component is zero far from the domain wall on
both sides it remains zero across the wall. We suspect, but have not proven, that the result
for the antiphase case might be quite general for translationally related domains which share
the same space group, where the order parameter should see at most a change in sign across
an antiphase wall. For the orientation case, generalization presents some difficulties, because
the relationship between the two domains has more possibilities. In the present example of
lead orthovanadate, there is only one nonzero order-parameter component, and so the possible
relationship is simple. However, a more general case might have two nonzero components in
the order parameter, and the possible relationships would be richer. Therefore, it is not known
at this point how general the results presented here are for orientation twins. However, the
methodology can be applied to a wide variety of phase transitions, so further study in these
directions to determine the generality of these conclusions is to be carried out.
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